Enhancing the Internet Routing Architecture

J.J. Garcia-Luna-Accves and Bradley R. Smith
Computer Engineering Department. University of California

Santa Cruz,

CA 95064

jj@soe.ucsc.edu, brad@soe.ucsc.edu

Abstract

The best-effort communication model used in the Inter-
net architecture has proven surprisingly powerful. How-
ever, limitations are being encountered as it is applicd to
more demanding applications and environments. Specifi-
cally, new requircments for policy-based control and per-
formance constraint of forwarding topologies are not well
supported by the best-¢ffort model. Proposed centralized,
on-demand solutions suffer from limitations in robust-
ness, efficiency, responsiveness, and effectiveness. We in-
troduce an enhancement to the Internet architecture called
network layer enclaves (NLEs). NLEs provide a solu-
tion for policy-based management of network resources
without sacrificing the strengths of the existing Internet
architecture. They expand the Intemet architecture goal
of supporting the development and integration of diverse
network technologies to include supponting the exploita-
tion of special capabilities of specific network technolo-
gies. They accomplish this by augmenting the original In-
ternet strategy of making minimal assumptions of under-
lying network technologies in the forwarding plane with
support for the maintenance of detailed knowledge of spe-
cial network capabilities in the routing plane. As a result,
NLEs provide effective policy-based routing control while
maintaining the distributed, end-to-end nature of the Inter-
net.

1 Motivation

1.1 The Internet Routing Architecture

The current Intemnet architecture, as implemented in the
global Intemet, is based on the cafenet model for intemnet-
working (6, 7, 8]. The two basic components of a calenet
are networks and galeways, where a catenet is formed by
the interconnecting of networks with gateways. A primary
goal of the catenet model, and therefore the Internet archi-
tecture, was lo encourage the development and integra-
tion of new networking technologies into the developing
catenets. To achieve this goal, only minimal assumptions

were made of networks and the routing computation by
the catenet model. Networks were assumed to support
the attachment of a number of computers, transport data-
grams, allow switched access so that attached computers
could “quickly’” send datagrams to different destinations,
and provide best-cffort delivery. The definition of best-
effort allowed datagrams to be dropped, or delivered out
of order, and assumes a routing computation that com-
putes routes for a single forwarding class chosen by the
oplimization of a single, typically delay-related metric.

Underlying the current architecture are a number of de-
sign principles that are largely responsible for the scal-
able, robust characteristics of Internet technologies. A pri-
mary design principle is that the Intemnet is distributed in
the sense that state existing in an intemet is autonomously
controlled by a process collocated with the state. The goal
being that state can only be destroyed if the controlling
process itself is destroyed. This property is also called
fate-sharing [4).

Another design principle is that the network core
should be kept architecturally simple, with complexity be-
ing pushed to the network edges. The goal of this princi-
ple is both performance and expandability. By keeping the
network itself conceptually simple and clean, it becomes
easier o implement efficient, high performance systems,
and it allows for casier enhancement of the architecture.

The final design principle discussed here is a gener-
alization of the end-to-end principle [18]). The end-to-
end principle argues that a function that can completely
and correcly be implemented only with involvement of
the application endpoints should, in general, only be im-
plemented in the endpoints. An example of the appli-
cation of this principle is the implementation of reliable
network communications. Since reliable communications
cannot be completely implemented without the participa-
tion of the end-system application processes (to protect
against corruption within the end system), the end-to-end
principle argues reliable communication should be imple-
mented in the end systems.

The generalization of this principle discussed here,
which might be called the right-sizing principle, argues

J. Dlaz de Ledn, G. Gonzalez, J. Figueroa (Eds.): Avances en Clenclas de la Computacion, pp. 41-54, 2003.
© IPN, México 2003.

41

that a function should be implemented in the smallest
scope required for a complete and correct implementation,
and no smaller. An example application of this principle
in the Internet is that the routing function is implemented
on all routers in an Internet. and not just on some sub-
set. The goal of this principle is to encourage architec-
tural integrity by avoiding or discouraging partial solu-
tions and solutions cobbled together from disparate parts,
and to discourage architectural bloat from the spread of
functionality throughout the architecture 10 address spe-
cial case circumstances.

As a result of these principles, the Internet architecture
is robust in the sense that it minimizes the existence of
brittle state that causes the failure of a single component
1o affect whole subsystems of an intemet, effectively lo-
calizing the affects of failures in an internet.

The Intemnet architecture is efficient and responsive for
a number of reasons. First, by discouraging the use of
centralized control systems, it encourages the use of sim-
plex control communication over duplex control commu-
nication. In a distributed control system, since state and
its controlling process are collocated, only simplex noti-
fication of the controlling process is required to respond
10 an event. In contrast, in a centralized control system,
duplex control communication is required to, first, notify
the controlling process of an event, and for that process to
then update remote state in order (o respond to the event.
Sccond. by avoiding the need for soft-state timers and re-
pair mechanisms required by centralized control sysiems,
it encourages the use of simple state management mecha-
nisms. Third, by limiting the scope of implementation of
a function to only the extent actually required to correctly
implement the function, it encourages simplicity and effi-
ciency in its implementation.

Lastly, by discouraging the use of centralized, on-
demand. routing algorithms, it encourages the use of
more efficient and responsive distributed routing algo-
rithms (12]. The routing protocols used in most of to-
day's computer networks arc based on shortest-path al-
gorithms that can be classificd as distance-vector or link-
state. Distance-vector protocols work by propagating up-
dates giving the distance to a destination to neighboring
routers whose routing tables may change as a result of the
update. Link-state protocols work by flooding updates de-
scribing the state of links in the network to all routers in
the network. Recently, a hybrid class of protocols, called
link-vector [12], has been defined that works by propa-
gating link-state updates only to routers whose routing
tables may change as a result of the update. However,
in a system depending on on-demand routing computa-
tions a link-state, complete lopology protocol is required
1o ensure an ingress router has the information it needs to
compule an optimal route. In contrast, distributed, hop-

by-hop routing systems can work with link-vector, partja|
topology protocols as each routing process is ensured of
learning from its neighbors of all links composing optimal
routes to all destinations in the internet. As a result, by en-
couraging the use of distributed, partial-topology rouling
solutions, the Internet architecture encourages more effi-
cient and responsive routing solutions,

The Internet architecture is effective because it encour-
ages. via the right-sizing principle, the integrated and
comprehensive implementation of functionality in con-
trast to ad-hoc, patch-work, or partial implementations.

1.2 The Problems with Today’s Internet Ar-
chitecture

The best-effort model of communication has proven sur-
prisingly powerful. Indeed, much of the success of the
Internet architecture can be attributed to this inspired de-
sign decision. However, implicit in this best effort com-
munications model are the assumptions of homogeneous
network use policies, and homogeneous network perfor-
mance requirements.

Largely as a product of its own success, limitations of
the Intemnet architecture resulting from these assumptions
are being encountered as it is applied to more demand-
ing applications and environments [3]. Examples of non-
homogeneous network usc polices are easy 1o find in the
Intemnet today.

The inability to provide differentiated services has be-
come a stumbling block to realizing the commercial po-
tential of Internet technologies. Commercial Intemnet Ser-
vices Providers (ISPs) would benefit from the ability to
provide different levels of services (e.g. bronze, silver,
gold, etc.), and a suite of service options (e.g. on-demand
video or audio, interactive video or audio conferencing,
ctc.) that would allow them to extract additional revenue
from existing infrastructure.

Non-commercial application of similar capabilities
would enable the management of network resources. For
example, portions of a network could be allocated along
depanmental (¢.g. accounting, engincering, sales, etc.),
functional (e.g. instruction vs. research), and use (c.g.
video, audio, web, e-mail, etc) lines. Such service differ-
entiation and resource management capabilities are not, in
general, possible in the single forwarding class communi-
cations model used in the Internet today.

As a special case of service differentiation, the issues
of security and trust have become critical for many mod-
em applications of Intemmet technology. While secunity
was important in the design of the Intemet architecture,
its implementation and deployment took lower priority to
the implementation and deployment of the basic technol-
ogy for what was still a very proof-of-concept commu-

nications architecture, More recent work (e.g. SSL [2]
and SSH [21]) has focused on application-level. end-to-
end security. This has left network layer security and trust
largely unresolved.

In general, security and trust in the network layer re-
volve around questions of who can see traffic as it tra-
verses an internet, and who can generate traffic load tar-
geted at some point in an internet. The former represents
a disclosure threat even for end-to-end protected traffic
where traffic analysis may resultin significant disclosures.
The latter represents a critical denial-of-service threat as
has been demonstrated in the many large-scale DDoS at-
tacks perpetrated in the Internet.

Given the single forwarding class communications
model underlying the current Intemet architecture, these
vulnerabilities are fundamentally unresolvable, While
end-to-end solutions, such as those mentioned above, can
help mitigate the problems, the basic vulnerabilities re-
main.

Similarly, it is easy to find examples of non-
homogeneous network performance requirements in the
Internet today. While the minimum delay paths used in
the best-effort communications model are well suited for
the data services (e.g. e-mail, telnet, htip, etc.) prevalent
in the early Internet, they are seriously inadequate for new
applications of Intemnet technologies.

For example, the on-demand delivery of isochronous
streams of data (i.e. data requiring delivery within spe-
cific time constraints, such as video and audio) requires
low delay variance (called jitter), while the interactive de-
livery of isochronous data (e.g. Intermet telephony) re-
quires both low delay and low delay variance. Similarly,
the delivery of streaming video requires high bandwidth,
and is relatively loss-tolerant, while streaming audio re-
quires relatively low bandwidth, but is loss-intolerant.

Due to the single-class forwarding model used in the
Internet architecture, only one of such a set of diverse ser-
vice models can be effectively supported in an internet to-
day. While some service models satisfy the requirements
of others (e.g. a high-bandwidth, low delay, and low delay
variance model can satisfy the requirements of both video
and audio conferencing) it will not utilize the network re-
sources as effectively as a set of custom service models.

In summary, the assumptions of homogeneous net-
work usage policies and performance requirements sig-
nificantly limit the effectiveness of Internet technologies
in supporting the demanding communication applications
to which these technologies are being applied. This is the
result of a new set of requirements being made of the In-
ternet architecture by new applications.

Enhancing the Internet Routing Architecture

1.3 New Requirements

In general, these new requirements involve the need for
policy-based control of the forwarding topologies used
for different classes of traffic. This need manifests it-
self in two distinct forms called traffic engineering, and
quality-of-service (QoS) routing. Truffic engineering in-
volves the constraint of the routing and forwarding func-
tions to satisfy administrative policies. Interested partics
(c.g. network management, users, etc.) define adminis-
trative policies specifying what classes of traffic can flow
over what portions of an intemet. Enhanced path selection
algorithms then compute routes that honor the administra-
live policy constraints, and enhanced forwarding mecha-
nisms are used to forward traffic over. in general, multiple
paths per destination.

QoS muting involves the constraint of the routing and
forwarding functions to satisfy performance requirements
of specific raffic classes. Again, interested parties (users,
network management, etc.) specify performance require-
ments for different traffic classes, and enhanced path se-
lection algorithms and forwarding mechanisms are used
to compute routes for, and forward traffic over paths that
satis(y the requirements.

1.4 Previous Solutions

A number of solutions have been developed over the
years to attempt to salisfy these new requirements for
policy-based routing and forwarding. Firewalls imple-
ment (among other services) a rudimentary form of traf-
fic engineering in the sense that they limit what traffic
is allowed to flow over a protected subset of an internet.
Overlay networks provide (again, among other services)
a quasi-static form of QoS routing where alternatives to
the currently selected network layer route to a given des-
tination may be found in an overlay network that provide
better performance than the current route for certain ap-
plications.

On-demand routing attempts to provide a comprehen-
sive solution by enhancing the network-layer routing and
forwarding mechanisms to support policy-based routing.
In general, on-demand routing works by a route request-
compule-setup process where route computations are re-
quested with a set of administrative and performance con-
straints, route computations are performed which com-
pute a path that satisfies the given constraints, and the path
is then setup, typically using label-swap mechanisms (11],
which allows traffic from multiple flows to be forwarded
over potentially multiple paths to the same destination.

The previously proposed solutions discussed above are
less robust due to their use of centralized control of state.
For example, the forwarding paths in on-demand routing
are brittle because the ingress router controls remote for-

43

A4 JJ Garcla-Luna-Aceves and Bradiey R. Smith

warding state in routers along paths it has set up. Simi-
larly, the tunnels compnsing an overlay network are brit-
tle due to the centralized management of remote tunnel
state in routers composing the overlay network.

Furthermore, these solutions are less efficient and re-
sponsive due to their use of centralized control of state,
and requirement of overly complex mechanisms for im-
plementing some functions. Specifically, due to its cen-
tralized nature, on-demand routing requires the use of
duplex conirol communication to respond to topology
changes in an intemet. Additionally, on-demand rout-
ing and firewalls are less efficient and responsive due to
their requirement of complex mechanisms to implement
their functionality. On-demand routing requires the use
of full-topology routing algorithms to compute optimal
paths to any destination in an intemet. In addition, on-
demand routing requires the use of more complex state
management mechanisms, such as soft-state timers and
repair mechanisms to manage forwarding state. Similarly,
firewalls impose heavy processing overhead on traffic to
implement their traffic engineering functionality. Lastly,
existing policy-based path selection algorithms, required
by on-demand routing are computationally expensive and
functionally incomplete.

Finally, the proposed solutions are less effective than
existing Intemnet solutions due to the “wrong-sizing™ of
the implementation of their functionality. Specifically,
overlay networks attempt to compute optimal routes with
only partial visibility of the network topology, and fire-
walls attempt to implement policy-based forwarding con-
wol from only a single point in an intemet.

In summary. the proposed solutions for policy-based
routing and forwarding incur significant penalties in ro-
bustness. efficiency. reliability, and effectiveness relative
10 the existing Internet architecture. Thesc costs can be
largely accounted for by the violation of a number of de-
sign principles underlying the Internet architecture. In the
remainder of this paper we present a new proposal for pro-
viding policy-based routing and forwarding that addresses
the shortcomings of these previous proposals. We call the
new architecture network-layer enclaves.

2 Network Layer Enclaves

Network Layer Enclaves (NLEs) are an enhancement to
the Intemet architecture that provide a solution for policy-
based management of network resources without sacrific-
ing the robust, efficient, responsive, and effective proper-
ties of the existing architecture discussed above. While
maintaining the original architectural goal of supporting
the development and integration of diverse network tech-
nologies. NLEs expand this goal to include supporting the
exploitation of special capabilities of available network

technologies and opportunities available in specific cir-
cumstances. Similarly, NLEs expand the original arch;.
tecture's strategy of making minimal assumptions of net-
work technologies in the forwarding plane by maintainin g
detailed knowledge of the special capabilities of available
network technologies in the routing plane.

NLEs achieve these goals by allowing network re-
sources to be assigned to one or more enclaves. Adminis-
trative policies can then be defined for each enclave spec-
ifying what wraffic is allowed in the enclave. New, effi-
cient policy-based path-selection algorithms are then used
by the routing protocols to pre-compute paths than honor
these policies for all destinations and enclaves. These new
path selection algorithms can, optionally, compute routes
satisfying QoS performance constraints within the en-
claves. The resulting routing tables will, in general, con-
tain multiple routes per destination, representing different
paths which satisfy different combinations of enclave ad-
ministrative policies and QoS performance requirements.

To support distributed forwarding over multiple paths
per destination, NLEs define a new forwarding architec-
ture called Distributed Label-Swap Forwarding (DLSF).
In the DLSF architecture, traditional label-swap forward-
ing is used, but under the distributed control of the policy-
based routing processes described above.

The resulting system implements 2 fully distributed
routing computation that pre-computes routes for every
destination, administrative policy, and, optionally, unique
set of performance characteristics available in an internet.
Forwarding over these routes is then performed by a sim-
ple and efficient label-swap data plane where control of
the forwarding state is fully distributed in the sense that
forwarding state is always controlled by a collocated rout-
ing process.

The resulting routing architecture can be seen as anal-
ogous to the Reduced Instruction Set Computer (RISC)
processor architecture in which researchers shifted much
of the intelligence for managing the use of processor re-
sources to the compilers that were able to bring a higher-
level perspective to the task, thus allowing much more
cfficient use of the physical resources, as well as free-
ing the hardware designers o focus on performance is-
sues of much simpler processor architectures. Similarly,
the communications architecture proposed here requires
a shift in intelligence for customized (i.c. policy-based)
path composition to the routing protocols and frees the
network layer to focus solely on hop-by-hop forwarding
issues, adding degrees of freedom to the network hard-
ware engineering problem that, hopefully, allow for sig-
nificant advances in the performance and effectiveness of
network infrastructure.

The remainder of this paper presents a design for im-
plementing the Network Layer Enclave architecture in the

Internet. Section 3 presents new policy-based routing al-
gorithms that efficiently compule routes which honor traf-
fic engincering and QoS constraints. Section 4 presents
the distributed label-swap forwarding architecture which
supports the efficient forwarding of traffic over multiple
routes per destination. And Section 5 presents conclu-
sions.

3 Efficient Policy-Based Routing

In this paper, policy-based routing is defined as the inclu-
sion of multiple metrics in a routing computation [10, 23].
Policy-based rouling supports fruffic engineering by the
computation of routes in the context of administrative
constraints on the type of traffic allowed over portions of
an internet. Analogously, policy-based routing supports
qualiry-af-service (QoS) by the computation of routes
in the context of performance-related constraints on the
paths specific traffic flows are allowed to use.

The metrics used in routing computations are assigned
to individual links in the network. For a given routing
application, a set of link metrics is identified for use in
computing the path metrics used in the routing decision.
Link metrics can be assigned to one of two classes based
on how they are combined into path metrics. Concave
{or minmuax) metrics are link metrics for which the min-
imum (or maximum) value (called the bottleneck value)
of a set of link metrics defines the path metric of a path
composed of the given set of links. Examples of concave
metrics include residual bandwidth, residual buffer space,
and administrative traffic constraints. Additive metrics are
link metrics for which the sum (or product, which can be
converted to a sum of logarithms) of a set of link metrics
defines the path metric of the path composed of the given
set of links. Examples of additive metrics include delay,
delay jitter, cost, and reliability.

While, in general, routing with multiple constraints is
an NP-complete problem [13, 14], there are many sub-
classes of this general problem that have been shown to
have polynomial-time solutions. For example, any prob-
lem involving two metrics with at least one of them be-
ing concave can be solved in polynomial-time by a tra-
ditional shortest path algorithm on the graph in which all
links that do not comply with the concave constraints have
been pruned (10, 15, 23). However, even for this case, as
the number of constraints becomes exponential in the size
of the graph, this result no longer holds.

The foundational work on the problem of computing
routes in the context of more than one additive metric was
done by Jaffe [14), who defined the multiply-constrained
path problem (MCP) as the computation of routes in the
context of two additive metrics. He presented an enhanced
distributed Bellman-Ford algorithm that solved this prob-

Enhancing the Internet Routing Architecture

lem with time complexity of O(n*W log(nW)) (where n
is the number of nodes in a graph, and W is the largest
possible metric value). Since Jaffe, a number of solutions
have been proposed for computing exact routes in the con-
text of multiple metrics for special situations. Wang and
Crowcroft [23] were the first (o present the solution to
computing routes in the context of a concave and an ad-
ditive metric discussed above. Ma and Steenkist [16] pre-
sented a modified Bellman-Ford algorithm that computes
paths satisfying delay, delay-jitter, and buffer space con-
straints in the context of weighted-fair-queving schedul-
ing algorithms in polynomial time. Cavendish and Gerla
[5] presented a modified Beliman-Ford algorithm with
complexity of O(n®) which computes multi-constrained
paths if all metrics of paths in an internet are either non-
decreasing or non-increasing as a function of the hop
count. Recent work by Siachalou and Georgiadis [19]
on MCP has resulted in an algorithm with complexity
O(nW log(n)). This algorithm is similar to the QoS al-
gorithm presented in Section 3.3 in that it is an enhanced
version of the Dijkstra algorithm based on invariants sim-
ilar to those underlying the algorithms presented in Sec-
tions 3.2 and 3.3, However, due to errors in the algorithm,
it does not compute correct results.

Several other algorithms have been proposed for com-
puting approximate solutions to the QoS routing problem.
Both Jaffe [14] and Chen and Nahrstedt {10] propose al-
gorithms which map a subset of the metrics comprising
a link weight to a reduced range, and show that using
such solutions the cost of a policy-based path computa-
tion can be controlled at the expense of the accuracy of
the selected routes. Similarly, a number of researchers
(14, 17] have presented algorithms which compute routes
based on a function of the multiple metrics comprising a
link weight. These approximation solutions do not work
with administrative traffic constraints.

In summary, the drawbacks of the current policy-based
routing solutions are that they have poor average case
performance, they implement inflexible routing models,
and solutions for computing approximate solutions do not
work with the traffic constraints used for traffic engineer-
ing.

3.1 Network Model

In this paper a network is modeled as a weighted undi-
rected graph G = (N, E), where N and E are the node
and edge sets, respectively. By convention, the size of
these sets are givenbyn = | N |and m = | E |. El-
ements of E are unordered pairs of distinct nodes in N.
A(i) is the set of edges adjacent to 1 in the graph. Each
link (i,j) € E is assigned a weight, denoted by wi;. A
path is a sequence of nodes < zy,Z3,...,Z4 > such that

45

(74, Zi41) € E foreveryi =1,2....,d—1,and al! nodes

the path are distinct. The weight of a path is given by
wp = Y92} Wy 5.0y The nature of these weights, and
the functions used to combine these link weights into path
weights are specified for each algonthm.

In the following, we propose a declarative traffic engi-
necning model where network links are labeled with state-
ments declaring what the desired routing policies are in
the form of constraints of the traffic allowed on each link.
These constraints take the form of link expressions in a
boolean traffic ulgebra which describe the traffic allowed
on a link. New, efficient policy-based routing algonthms
then compute a mimmal set of routes, composed of a path
expression and a next hop. for cach destination in an in-
temet. These algorithms, in effect, discover the optimal
set of forwarding classes needed at a given source in the
internet to implement the desired policies. These path ex-
pressions are then installed in the appropriate traffic clas-
sifiers.

The traffic algebra is a boolean algebra used to define
wraffic classes in a fiexible and efficient way. Specifically,
it is composed of the standard boolean operations on the
set {0,1)}, where p primitive propositions (variables) are
true/false statements describing characteristics of network
traffic. The syntax for expressions in the algebra is speci-
fied by the BNF grammar:

v i= 01 |un...tp | (-9) | (v Ao

(¢ V)| (g = v) | SAT(y)

The set of primitive propositions, indicated by v; in the
grammar, can be defined in terms of any globally sig-
nificant atinbutes of the ingress router’s state that can
be expressed as a true/false statement. Link expressions
identify the traffic classes allowed (o traverse the link,
and are denoted by &, in the algorithms. Path expres-
sions, denoted by €, in the algorithms, and defined as
€p = Exyxs NExyzs Ao A€z _ 2, specify the set of traffic
classes allowed to traverse the path. There is a maximum
of 27 unique sets of traffic classes.

The SAT () primitive of the traffic algebra is the SAT-
ISFIABILITY problem of traditional Boolean algebra.
Satisfiability must be tested in two situations by the algo-
rithms presented below that implement traffic-engineering
computations. First, an extension 1o a known route should
only be considered if classes of traffic exist that are au-
thorized to use both the path represented by the known
route and the link used 1o extend the path (at line 15 in
Figure 2). This is true iff the conjunction of these expres-
sions is satisfiable (i.e. SAT(e; A €i;)). Second, given
that classes of traffic exist that are authorized to use a path
represented by a new route, the algorithms must deter-
mine whether all traffic supported by that route has also
been satisfied by other, known shonter routes (not shown

P = Quecuc of permanent routes to all nodes,

Pa = Qucuc of permancnt roules o node i,

T = Heap of icmporary routes.

Ta = EnuyinT formden.

B. = Baaxed ree of nwtes for node n.

Ea = Summuary of traftic expression for all routes
in Pyp.

Table 1: Notation.

in the algorithms presented in this paper). This is true
iff the new route’s traffic expression implies the disjunc-
tion of the traffic expressions for all known better routes
(i.e. (€ = €4y, Eiyy --) is valid, which is denoted by
(e = &) in the algorithms). Determining if an expres-
sion is valid is equivalent to determining if the negation of
the expression is unsatisfiable. Therefore the expressions
at lines 10 and 13, of the form £; — €3 are equivalent to
~SAT(~(e1 = €2)) (or ~SAT (1 A —¢2)).

The satisfiability decision performed by SAT (€) is the
prototypical NP-complete problem [13]. As is typical
with NP-complete problems, it has many restricted ver-
sions that are computable in polynomial time. An analysis
of strategies for defining computationally tractable traffic
algebras is beyond the scope of this paper, however we
have implemented an efficient, restricted solution to the
SAT problem by implementing the traffic algebra as a set
algebra with the set operations of intersection, union, and
complement on the set of all possible forwarding classes,

The routing algorithms presented here are based on an
enhanced version of the path algebra defined by Sobrinho
[20), which supports the computation of a set of routes
for a given destination containing the “best” set of routes
for each destination. Formally, the path algebra P = <
W, ®, <,C, 0,5 > is defined as a set of weights W, with
a binary operator ®, and two order relations, < and C,
defined on W. There are two distinguished weights in W,
0 and 50, representing the least and absorptive elements
of W, respectively. @ is the original path composition
operator, and < is the original total ordering from {20]. ®
is used to compute path weights from link weights. < is
used by the routing algorithm to build the forwarding set,
starting with the minimal element, and by the forwarding
process 10 select the minimal element of the forwarding
set whose parameters satisfy a given QoS request.

A new relation on routes, C, is added to the algebra
and used to define classes of comparable routes and select
maximal elements of these classes for inclusion in the set
of forwarding entries for a given destination. C is a partial
ordering (reflexive, anti-symmetric, and transitive) with
the following, additional property:

Property 1 (w: C wy) = (wr X wy).

A route rp, is a maximal element of a set R of routes in

a graph if the only elementr € R where r,, C ris rp,
itself. A set Ry, of routes is a maximal subset of R if,
forallr € Reitherr ¢ R, orr € R, and forall s €
R — {r}. r € s. The maximum size of a maximal subset
of routes is the smallest range of the components of the
weights (for the two component weights considered here).
An example path algebra based on weights composed of
delay and cost is as follows:

wi = (diyc)
0 = (0,0
© = (o00,00)
wi®w; = (di +dj,ci+c;)
wifwy = (di<dj)V((di =dj)A(ci <g))
wilwy = (dy<d)A(e<a)

3.2 Basic Algorithms

The notation used in the algorithms presented in this pa-
per is summarized in Table 1. In addition, the maxi-
mum number of unique truth assignments is denoted by
A = 27, the maximum number of unique weights by
W = min(range of weight components), and the max-
imum number of adjacent neighbors by amas, = max(|
A(i) | | i € N}. Table 2 defines the primilive opera-
tions for queues, heaps, and balanced trees used in the
algorithms, and gives their time complexity used in the
complexity analysis of the algorithms.

The algorithms presented in this section are based on
the data structure model shown in Figure 1. In this struc-
ture, a balanced tree (B;) is maintained for each node in
the graph to hold newly discovered, temporary labeled
routes for that node. The heap T comtains the lightest
weight entry from each non-empty B; (for a maximum
of n entries). Lastly, a queue, F;, is maintained for each
node which contains the set of permanently labeled routes
discovered by the algorithm, in the order in which they are
discovered {which will be in increasing weight). The gen-
eral flow of these algorithms will be to take the minimum
entry from the heap T, compare it with existing routes
in the appropriate P, if it is incomparable with existing
routes in P; it is pushed onto P;, and “relaxed” routes for
its neighbors are added to the appropriate B, 's.

The correctness of these algorithms is based on the
maintenance of the following three invariants: for all
routes] € PandJ € B.,I X J,allroutestoa
given destination 1 in P are incomparable for some set of
satisfying truth assignments, and the maximal subset of
routes to a given destination in P U B, represents the
maximal subset of all paths to j using nodes with routes
in P. Furthermore, these invariants are maintained by the
following two constraints on actions performed in each it-
eration of these algorithms: (1) only known-non-maximal

Enhancing the Internet Routing Architecture

Notation Description
Queue
Push(r,Q) Insert record r at tal of queue Q (O(1))
Head(Q) Retum record at head of queve Q
o1y
Pop(Q) Delete record at head of queve Q
(o{1))
PopTail(Q) Delete record af tail of queue Q (O(1))
o-Heup
Insert(r, H) Inset rcord v in haap H
(O(logg(n)))

IncreaseKey(r,rp) Replace record rp in heap with
record £ having greater key value
(O(dlog(n)))

Replace record vy in heap with record
r having lesser key value (O(log4(n)))

DecreaseKey(r,ry)

Min(H) Rewm record in heap H with smallest
key value (O(1))
DeleteMin(H) Delete record in heap H with smallest
key value (O(dlogy(n)))
Delete(r)) Delete rcord rp, [(rom bheap
(Ofdlog4(n)))
Bulunced Tree
Insert{r, B) Insert record r in uree B (O(log(n)))
Min(B) Retum record in tree B with smallest
key value (O(log(n)))
Delete Min(B) Delete record in tree B with smallest
key value (O(log(n)))

Table 2: Operations on Data Structures [1].

routes are deleted or discarded, and (2) only the smallest
known-maximal route is moved to P.

Due to space constraints, only the general algorithm
that computes routes in the context of both link predicates
and multiple metrics is presented here.

Figure 2 presents a modified Dijkstra algorithm that
compules an optimal set of routes to each destination sub-
ject to multiple general (additive or concave) path metrics,
in the presence of traffic constraints on the links. The time
complexity of Policy-Based-Dijkstra is dominated by the
loops at lines 4, 11, and 15. The loop at line 4 is exe-
cuted nW A times, and the loop at line 15 mW A times.
The loop at line 11 scans the entries in P to verify a new
route is best for some truth assignment. For a given des-
tination, this loop is executed at most an incrementally
increasing number of times, starting at 0 and growing to
WA - 1 (the maximum number of unique routes to a
given destination) for a total of E:‘:f'l i= M‘-—'-,-M
times. For completeness, the statements at lines 6 and
21 1ake time proportional to log(ama.: W A) for a total of
nWAlog(amaz W A) and mW A log(ama: W A), respec-
tively; and those in lines 7-9 and 17-20 proportional to
log4(n) for a total of nW Alog,(n) and mW Alog,(n).
respectively. Therefore, the worst case lime complexity of
Policy-Based-Dijkstra, dominated by the loop at line 11,
is O(nW?2 A?),

The loop at line 11, which dominates the cost of Policy-

47

48 JJ Garcla-Luna-Aceves and Bradley R. Smith

Figure 1: Model of Data structures for Basic Algorithms

algorithm Policy-Based-Dijkstra

begin _
1| Pursh(<s,,0,1>, P.):
2 foreach {(1,)) € Als)}
3 Insert(€ j, 0, Wagr€ay >0)
4 whike(|T|= 0)

begin

5 <1 P D & Min(T);
6 DeleteMin(By);
7 H(:B,i= 0)
| then DeleteMin(T)
9 ebe IncreascKey(Min(Bi), Ti);
10 €emp & €0i pir & Tail(P);
11 whil ((€imp # 0) A (ptr#8))

12 Cimp + Limp A —pLrc; pir + pir.next;
13 W(cimp # 0)
then begin

14 Push(<i,prwi e > Bi);
15 for rach {(i,j) € A(i) | SAT(ei Aeyy)

begin
16 wy = Wy @B Wiy & gy
17 H(Ty; = 0)
18 then Insert(<j,i,wj, €52, T)
19 ehse if (wy < Tj.w)
20 then DecreaseKep(<i, i, wi 65>, T)
21 Insert(< i i,wy,€5 >, By)s

end

end
end
end

Figure 2: General-Policy-Based Dijkstra.

Based-Dijkstra, is required because there is no way to
summarize the permanent routes for a destination. How-
ever, for the traffic engineering and QoS variants of this
algorithm, the permanent routes can be summarized by a
summary traffic expression (formed by the disjunction of
permanent route path expressions) and the weight of the
last route, respectively. Using these shortcuts, the com-
plexity of the traffic engineering and QoS algorithms are
O(mAlog(A)) and O(mW log(W)), respectively.

3.3 Enhanced Algorithms

The log(A) and log(W) factors in the complexity of the
traffic engineening and QoS variants of the Policy-Based-
Dijkstra algorithm (respectively) are the result of the use
of a balanced tree for storing the temporarily labeled
nodes for a given destination. This section presents en-
hanced versions of these algorithms which use a queue-
based data structure for this purpose, reducing the cost of

managing these structures to a lower order term in the y;
complexity. As a result the runtime cost of the enhan iy
algorithms becomes dominated by log,(n) factors =

the manipulation of the T heap. from

This enhancement is based on the property thy route
to a given node with the same predecessor are discovemsi
in strictly increasing (or non-decreasing, depending on the
algorithm) order. This property is a resuit of the fac; that
routes to a given predecessor will be discovered in strictly
increasing (non-decreasing) order, and therefore the ordey
of discovery of routes from a given predecessor to one of
its neighbors will have the same property.

Based on this insight, the data structure shown in Fig.
ure 3 can be used to improve the performance of the 3].
gorithms presented in Section 3.2. In this data structyre
the balanced trees for each node are replaced with a se;
of queues for each neighbor of the node, and a summ
heap containing the head of each neighbor queue, Exploit-
ing the ordering property of these queues, the algorithms
ensure that each node head H;, and therefore T, contain
the lightest route in the link queues that is not subsumed
by the routes in F;. Due to space constraints, only the
QoS version of these algorithms is presented here.

Figure 11 presents the enhanced version of the TD-
QoS-Dijkstra algorithm. Similar to the basic algorithms,
the correctness of these algorithms is based on the invari-
ants and constraints presented in Section 3.2. Specifically,
as detailed in the comments from that section, constraints
1 and 2 are maintained by the DeleteTMin() and AddCan-
didate() functions, and, based on this, the Dijkstra itera-
tion over the n'? best route in the main body of the algo-
rithm maintains the invariants.

The runtime complexity of the TD-QoS-Dijkstra algo-
rithm (again, ignoring the cost for determining satisfia-
bility) is dominated by the loops at lines 6 and 10. The
loop at line 6 is executed at most once for cach incom-
parable path to each node in the graph for a total of nW
times. The loop at line 10 is executed at most once for
each distinct instance of an edge in the graph, for a total
of mW times. The most costly operation in the loop at
line 6 is the DeleteTMin() call at line 9. In the DeleteT-
Min() routine, the loop at line 7 will be executed, in total,
at most once per neighbor for each forwarding class fora
total of amazW, and the cost per call of the heap opera-
tions at lines 13 and 14 is dlogp(n). Therefore, the total
worst-case cost of the call at line 8 of the main algorithm
is nW log4(n) 4+ @ma:W. In the AddCandidate() routine,
the runtime complexity is dominated by the heap opera-
tions at lines S, 20, and 23, which cost log4(n) each, for
a total cost of the call to AddCandidate() at line 12 of the
main algorithm of mW log,(n). Therefore, the worst-
case time complexity of the enhanced TD-QoS-Dijkstra
algorithm is O(mW log(n)).

Enbancing the Internet Routing Architecture

Q é
@—1— H —
. Fﬂ y E T
@rﬁ . ; (ueae lil”
:
=

Figure 3: Model of Data Structures for Enhanced Algorithms

Experiments were run on the TD-QoS-Dijkstra algo-
rithm on a 1GHz Intel Pentium 3 based system. The algo-
rithms were implemented using the C++ Standard Temn-
plate Library (STL) and the Boost Graph Library. Each
test involved running the algorithm on ten random weight
assignments to ten randomly generated graphs (gener-
ated using the GT-ITM package [24]). For each test the
worst case measurements are graphed. The metrics were
generated using the “Cost 2" scheme from [19] where
the delay component is randomly selected in the range
1..MazMetric, and the cost component is computed as
cost = a(MazxMetric — delay), where o is a random
integer in the range 1..5; this scheme was chosen as it
proved to result in the most challenging computations
from a number of different schemes considered. The QoS
routing problem was used for these tests as it was eas-
iest to generate meaningful random metric assignments
for. Space overhead was measured in terms of the maxi-
mum number of entries stored in the B, structures.

Tests were run for performance (both runtime and
space) as a function of graph size, average degree of the
graph, and the maximum link metric value. Due to space
constraints, only the graphs for size are shown here. Also,
since the maximum metric was shown (o have little im-
pact on performance, only results for tests with a maxi-
mum metric of 1000 are presented here. Figures 4 and 5
compare the performance of the basic QoS (not presented
in this paper), enhanced QoS, and traditional (single path)
Dijkstra algorithms. They show that, while costs increase
with both graph size and average degree, both the magni-
tude of these costs and their growth rate are very manage-
able. While runtime grows to approximately 2 seconds for
the largest problems, for graphs smaller than 500 nodes
with an average degree of 8 (well beyond the scale sup-
portable by current Intemet routing protocols) the runtime
is al most a few hundred milliseconds, and the growth rate
is barely beyond linear in this range of parameters. Simi-
larly, the worst-case space utilization stays below 30,000
entries (consuming less than 10MB of memory) with sim-
ilar growth rates.

In summary, the results showed: excellent runtime per-

formance in the range of parameters expected from rout-
ing domains in the Intemel (i.e. average degree less than
5. and routing graph size less than 500); the algorithms
exhibited very well-behaved growth rates; and they ex-
hibited very reasonable space overhead in all scenarios.

4 Distributed Label-Swap Forward-
ing

The policy-based routing algorithms presented in Sec-
tions 3.2 and 3.3 compute multiple routes to the same des-
tination to satisfy the policy requirements of an internet.
Such routes are not supported by current, host-address-
based packet forwarding mechanisms that only allow one
route per destination. The solution to this problem is 1o
use label-swapping technology (e.g.. MPLS [11)) as a
generalized forwarding mechanism that replaces IP ad-
dresses as the names for network attachment points in
the route binding function with arbitrary labels which can
be defined by the routing protocol to represent any pol-
icy/destination pair for which a route has been computed.
A significant innovation of the policy-based routing ar-
chitecture presented here is the combination of a table-
driven, hop-by-hop routing model with label-swap for-
warding mechanisms. Traditionally, label-swap forward-
ing has only been seen as an appropriate match with an
on-demand, source-driven routing model. Indeed, to a
large extent, the virtual-circuil nature of these previous
solutions has been attributed to their use of label-swap
forwarding. Contrary o this view, the position taken here
is that host addresses and labels are largely equivalent al-
ternatives for representing forwarding state, and that the
virtual-circuit nawre of prior architectures derives from
their use of a source-driven forwarding model. The pn-
mary conceptual difference between address and label-
swap forwarding is that label-swap forwarding provides
a clean separation of the control and forwarding planes
[22) within the network layer, where address-based for-
warding ties the two planes together. This separation pro-
vides what might be called a topological anonymity of

49

50 JJ Garcfa-Luna-Aceves and Bradley R. Smith

Figure 4: Compare Runtimc(Size)

the forwarding plane that is critical to the implementa-
tion of policy-based routes. Chandranmenon and Vargh-
ese [9] present a similar notion, which they call threaded
indices, where neighboring routers share the indexes into
their routing tables for specific routes which are then in-
cluded in forwarded packets to allow rapid forwarding ta-
ble lookups. In addition they present a modified Beliman-
Ford algorithm that exchanges these labels among neigh-
bors. Our solution generalizes the threaded index concept
to use generic labels (with no direct forwarding table se-
mantics), uses these labels to represent routing policies
computed by the routing protocols, and defines a fam-
ily of routing protocols to exchange local labels among
neighbors.

As illustrated in Figure 6, label-swap forwarding can be
used in the context of traditional address-based forward-
ing. In this example the forwarding 1able is referenced
for both traffic classification (through the “address prefix”
field), and for label-swap forwarding (through the “local
label” field). The benefit of this mechanism for traffic for-
warding is it can be generalized to handle policy-based
forwarding. In addition, label-swap forwarding can be
used to implement traffic engineering via the assignment
of traffic to administrative classes which are used to select
different paths for traffic to the same destination depend-
ing on the labeling of links in the network with admin-
istrative class sets. For example, Figure 7 shows a small
network with four nodes, two administrative classes A and
B. and the given forwarding state for reaching node 4.
The benefits of this architecture are that it is based on for-
warding state thal is agnostic to the definition of forward-
ing classes, allowing the data forwarding plane to remain
simple yet general; and it concentrates the path computa-
tion functions in the routing protocol, which is the least
time critical, and most flexible component of the network
layer.

The enhancement of traditional unicast routing systems
with the policy-based routing technology presented above

[] = g ax [-] 108 ——
] -
Cunt msn 4 venany Y -

Spme ¢ wews B Wy i Wb
Sirrennanti

Figure 5: Compare Space(Size)

is straight-forward. The routing protocol must be en-
hanced to carry the additional link metrics required 1o
implement the desired policies. This requires the use of
either a link-state or link-vector routing protocol that ex-
changes information describing link state. As described
carlier, by supporting the use of partial-topology, link-
vector protocols this architecture supports much more ef-
ficient solutions than the on-demand model.

Forwarding state must be enhanced to include local and
next hop label information in addition to the destination
and next hop information existing in traditional forward-
ing tables. Traffic classifiers must be placed at the edge
of an internet, where “edge” is defined to be any point
from which traffic can be injected into the internet. Since
each router represents a potential traffic source (for CLI
and network management traffic), this effectively means
a traffic classification component must be present in each
router. As illustrated in Figure 8, the resulting traffic flow
requirements are that all non-labeled traffic (sourced ei-
ther from a router itself, or from a directly connected host
or non-labeling router) must be passed through the traf-
fic classifier first, and all labeled traffic (sourced either
from the traffic classifier or a directly connected labeling
router) must be passed to the label-swap forwarding pro-
cess.

Lastly, the routing protocol must be enhanced to ex-
change information nceded to compute the label swap
components of its forwarding tables. The output of the
routing algorithm is forwarding information described in
terms of a destination, traffic expression, and path weight
for each computed route. To be used for forwarding, this
information must be augmented with local and next hop
Jabels. To determine the next hop label for a given route
the routing process requires the forwarding tables of its
neighbors. Therefore, the final enhancement required of
routing protocols is that they exchange local forwarding
1ables and use this information to compute the next hop
label for their routes. One challenge presented by this re-

-~ u
[
LYK
- =

-
Vot e e

Figure B: Traffic Flow in Policy-Enabled
Router

quirement is that the routes computed by the routing al-
gorithm must be assured of matching an aclive route in
the selected next hop neighbor. As illustrated in Figure 9,
this is not guaranteed by the algorithms presented above.
Specifically, in this internet there are a number of equally
*good™ routes from nodes 8 and < to node d. For exam-
ple, it is possible that the routing process at node i selects
the paths through its neighbors { and j 1o provide two hop
paths for traffic classes A, B, and C, while node s selects
the paths that go through nodes k and m. In such a case
there is no next hop label that can be chosen at s for routes
to d that will satisfy the traffic policies.

To address this problem, Figure 10 presents an en-
hanced version of the basic traffic engineering algorithm
for use in the context of hop-by-hop forwarding. In this al-
gorithm, routes are augmented with two additional fields;
ng is the next hop neighbor for a route to destination 4,
and Iy is the next hop label for d. As described above,
a partial forwarding table is maintained for each neigh-
bor, specified by Fy,[d], containing an array of routes for
each destination in the intemnet. Each entry in this array,

Enhancing the Intarnet Routing Architecture

Figure 9: Next Hop Problem with Policy-
Based Rouling

denoted by < d,wq, €4, >, gives the weight, traffic ex-
pression, and next hop label for each route in the neigh-
bor's forwarding table. In this algorithm, new paths are
only considered if they are extensions of paths chosen by
the neighbor which is the next hop to the predecessor to
the path’s destination. For example, from Figure 9, node
s will only consider paths to destination d that are exten-
sions of node i's paths to d through nodes ! and j. A fringe
benefit of this enhancement is the next hop label compu-
tation can now be integrated with the routing computation
(as shown by the inclusion of the next hop label in the
routes computed by the algorithm).

5 Conclusions

This paper presents an enhancement 1o the Internet ar-
chitecture called Network Layer Enclaves (NLEs). NLEs
are the first proposed solution for providing policy-based
management of traffic forwarding in the Intemet that
maintains its distributed, hop-by-hop rouling architec-

51

52 JJ Garcla-Luna-Aceves and Bradley

algorithm Hop-by-Hop-TD-TE-Dyjkstra
begin
Push(< e, 2.0,1,2,86>, P,);
for each {(#.J) € A(s))
Inserl(<), 8,way,€0y, 5,02, T)
while (i T| = 0)
begin
<upi.wneng i >« Min(T)
Drelete Min{B,),;
M(/ B, = 0)
then DeleteAMin(T)
ebse IncreaseKey(Min{B), Ti):
0 MW(-~(c. =+ &))
then begin

L R

- D OB < O WA

11 Push(<i, pi,wi e >, B);
12 £~ & Ve
13 for each {(1,j) € A(i) |
(2 <jwjief ;> € F.,b) |
(Cam; f\t; =g Aeggy) A
(Wanmg +=J; = wi +wij)) A
SAT(ei Aeig) A ~((ed Aeig) = E5)}
begin

14 w, &~ wy + Wiy g5 +— 81 A ey
15 U(T, = @)
16 then Insert(<j, i, wy 5,045,105 >, T)
17 elseif (w, < Tj.w)
13 then DecreascKey(< 4, i, wy, 5,04, 15>, T)
19 Insert(<j, s, wyi ¢5, 0,05 >, By
ond
end
end
end

Figure 10: Hop-by-Hop TD-TE-Dijkstra.

ture. NLEs work by allowing network resources to be
assigned to enclaves, and policies 1o be defined specify-
ing what traffic is allowed in each enclave. A family of
new, efficient policy-based path-selection algorithms, and
a new forwarding model called Distributed Label-Swap
Forwarding (DLSF) are presented which are needed to
implement NLEs. The enhanced TD-TE-Dijkstra algo-
rithm is the most efficient algorithm available for com-
puting routes that satisfy traffic engineering requirements,
and Policy-Based-Dijkstra is the first algonthm for com-
puting routes that simultaneously satisfy traffic engineer-
ing and quality-of-service requirements. A traffic algebra
is defined to formalize the notion of traffic constraints,
and a set-based model is identified for efficiently im-
plementing restricted but useful traffic engineering poli-
cies. The DLSF architecture efficiently implements mul-
tiple paths per destination required for hop-by-hop policy-
based routing using label-swap-based forwarding, and a
hop-by-hop version of the TD-TE-Dijkstra algorithm is
presented for computing routes that can be implemented
in this architecture.

The resulting system implements a fully distributed
routing computation that pre-compules routes for every
destination, administrative policy, and, optionally, unique
set of performance characteristics available in an internel.
Forwarding over these routes is then performed by a sim-
ple and efficient label-swap data plane where control of

the forwarding state is fully distributed.

References

(1] Ravindra K. Ahuja, Thomas L. M,
J:.lmcs B. Orlin. Network Flows — The,, A
rithms, and Applications. Prentice Hal|, 19% 'so-

[2] Christopher Allen and Tim Dicrks. Th
col Version 1.0. RFC 2246, January l‘):);n‘S Pl

Bnanti, ang

k)| M.mj(.)ry S. Blumenthal and David D. Clark R
thinking the design of the Internet: The eng ;o cc-
arguments vs. the brave new world. ACM Trgp r:cd

tions on Internet Technol :
poie) ology, 1{(1):70-109, Augug

{4] Brian E. Carpenter. Architectural Principles of th
Internet. RFC 1958, June 1996. ¢

(5] D. Cavendish and M. Gerla. Intemet QoS Routing
using the Bellman-Ford Algorithm. In Proceedings

IFIP Conference on High Performance Networking
IFIP, 1998. '

[6) Vinton G. Cerf. The Catenct Model for Internet-
working. IEN 48, July 1978.

{7] Vinton G. Cerf and Edward Cain. The DoD Internet
Architecture Model. Computer Networks, 7:307-
318, 1983. .

[8) Vinton G. Cerf and Robert E. Kahn. A Protocol for
Packet Network Intercommunication. JEEE Trans-
actions on Communications, COM-22(5):637-648,
May 1974.

[9] Girish P. Chandranmenon and George Varghese.
Trading Packet Headers for Packet Processing. IEEE
ACM Transactions on Networking, 4(2):141-152,
October 1995. 1995.

{10] Shigang Chen and Klara Nahrstedt. An Overview

of Quality of Service Routing for Next-Generation
High-Speed Networks: Problems and Solutions.
IEEE Network, pages 6479, November 1998.

[11] Bruce Davie and Yakov Rekhter. MPLS: Technology

and Applications. Morgan Kaufmann, 2000.

[12] JJ. Garcia-Luna-Aceves and Jochen Behrens. Dis-

tributed, Scalable Routing Based on Vectors of Link
States. IEEE Journal on Selected Areas in Commu-
nications, October 1995.

[13] Michael R. Garey and David S. Johnson. Comput-

ers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman & Co., 1979.

[14) Jeffrey M. Jaffe. Algorithms for Finding Paths
with Multiple Constraints. Networks, 14(1):95-116,
1984,

[15] Whay C. Lee, Michael G. Hluchyi, and Pierre A.
Humblet. Routing Subject to Quality of Service
Constraints in Integrated Communication Networks.
IEEE Network, 9(4):46-55, August 1995,

(16] Qingming Ma and Peter Steenkiste. Quality-of-
Scrvice Routing for Traffic with Performance Guar-
antees. In Proceedings 4th Internasional IFIP Work-
shop on QuS. IFIP, May 1997,

[17] Piet Van Micghem, Hans De Neve, and Fernando
Kuipers. Hop-by-hop quality of service routing.
Computer Networks, 37:.407-423, November 2001.

(18] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-
End Arguments in System Design. ACM Trans. on
Computer Systems, 2(4):277-288, November 1984,

(19] Stavroula Siachalou and Leonidas Georgiadis. Ef-
ficient QoS Routing. In Pruceedigns of INFO-
COM'03. 1EEE, April 2003,

{20] Jodo Lufs Sobrinho. Algebra and Algorithms for
QoS Path Computation and Hop-by-Hop Routing in
the Internet. [EEE/ACM Transactions on Network-
ing, 10(4):541-550, August 2002.

(21} SSH Communications Security.
http://www.ssh.com/,

[22] George Swallow. MPLS Advantages for Traf-
fic Engineering. IEEE Communications Magazine,
37(12):54-57, December 1999.

[23] Zheng Wang and Jon Crowcroft. Quality-of-Service
Routing for Supporting Multimedia Applications.
IEEE Journal on Selected Areas in Communica-
tions, pages 1228-1234, September 1996.

[24] Ellen W. Zegura, Ken Calvert, and S. Bhattacharjee.
How to Model an Internetwork. In Pruceedings IN-
FOCOM '96. IEEE, 1996.

Enhancing the Internst Routing Architecture

53

algorithm TD-QoS-Dijkatra

a b Lo

-

begin

Push(<s,s,0>, P.};

for each {(s,3) € A(s)}
begin
Pu.h(<jl '-w'l>l Q.):
Insert(<j, o, way >, 11,);
Insert(<j, 0,way >, T);
end;

while (|T'| > 0)
begin
<i,p,wd — Min(T);
Push(<i,p,w>, P);
Delete T™Min():
foc each ((i,5) € A(i))

begin

W W B wi;
AddCandidale(< j, §, wi >);
end
end
end

function QoS-Deleac TMin()

A e

[]
9
10
1
12

3

11 Delete mirunium entry from T and resiore invariants:
/# Coastraint 1 - naly deletes routes (line 9) thal are
" C another mute.
Constrant 2 = loop at line 7 ensurcs new Ty
vew Tail(P).
begin
<i,pow> — Min(T);
Pop(QF);
u(Qr|>0)
then IncreaseKey(Head(QT), HT)
else DeleteMin(H);
(| H|> 0)
then begln
/i Find smallest ruie In link gueucs that ks ot
1 C the delcted nute.
for each {(i, k) € A({) | (1Q71> 0)A
(Head(Q¥)w C w)}

begin

while (1QF1> 0) A (Head(Q}).w C w))
Pop(Q}):

X(QIl> 0)
then Increase Key(Head(QF), H:‘
else Delete(HP);

end
H(|H(|> 0)
then IncreaseKey(Min(H,), T,); return;
end
DeleteMin(T);
end

function QoS- AdICandidate(< i, p, w, >)

[- VI P ~N =

[]

10
11
12
13
14
15
16

17

pRRER

11 Add new nwte 10 appropriate Q@ and ey
it Constraint 1 - only drops known oo
/] (lincs 1, 10, 1S, and 24).
I Constrant 2 - ensures Min
n all nuitesin Q7

tore imxim
Tapanable nnytey

(H() =X (a2d thererore

begin
il (wy C Tail(P;).w) then retum;
M(|H(|= 0)

then begin

P“'h(<‘| P >, Q’)n
Insert(<i,p,wi >, }J")i
In.‘r‘(< i-P-“l)- T).
retum;
end

<i, hlw“ >+« M‘ﬂ("‘);

I (wm <X wy)

then
f(wi C wm)
then return;
ehebegin // (Wi £ wm) A (We <X w
(1Q7 | = 0) e 2 030}
then Insert(<i,p,w(>, H,)
elseif (wy C Tail{QF).w)
then retum;
Pu'h(‘:i-P-UI >, Q");
end

ese /wi < wmislnccwy > Min(H7), it mustbe
Nwue that | QP | = 0.
H(Ui E Um)
then begin
Push(<i,p,wi>, QF);
Insert{<i,p,wi>, Hi);
11 Fallowing replaces <9, kywem >,
DecreaseKey(<i,p,wi >, Ti);
end
elsebegin // (Wi J wwm)
Push(<i, p,wi>, QT)
I Following replaces < i, kywm >.
DecreaseKey(<i, p,wy >, H");
DecreaseKey(<i, pywi >, Ti);
Pop(Q?);
Q> 0)
then Insert(Head(QY), Hi);
ond

Figure 11: Enhanced QoS Dijkstra.

